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LETTER TO THE EDITOR 

A new algorithm for computing susceptibilities 

W Yeung 
Depanment of Physics, Queen Mary and Westfield College. University of London, Mile 
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Received 1 June 1992, in final form 16 July 1992 

Abstract. W presenl a new algorithm for computing Lindhard sums in susceptibility 
calculations Based on the joint density of slates (JDOS) inlroduced by us some time ago 
our algorithm gives belter conlrol of convergence by demupling the problems relared to 
the mesh in k space and the mesh used for integrating over the energies. Our method is 
an extension of the usual lemahedron method for densities of states. We find that, rather 
than complicating lhe pmblem, the presence of matrix elements helps in the computation 
of the IWS. We use the method to calculate :he JDOS and the unenhanced susceptibilities 
for a FCC model band s t m u r e .  Since it is based on IWS the method can be easily 
adapted to calculale the t-matrix which characterizes off diagonal long-range order. We 
also outline how we use the method IO calculate susceplibilities for fin1 principles band 
structures. 

The generalized susceptibility x(g + G , q , w )  is fundamental to the study of the 
electronic properties of solids. It describes the response of the solid when probed by 
electromagnetic fields, light and neutrons. Its poles describe elementary excitations 
like spin waves for magnetic systems. Via the electron-phonon interactions it leads to 
the dynamical matrix and phonon spectra, and magnetoelasticity for magnetic systems. 
Its static value serves as a criterion for phase changes and the stability of the assumed 
ground state. 

Besides the problem of generating the band structures, practical calculation of 
x requires an efficient method of evaluating Brillouin zone sums. For q in special 
directions one Can use group theory to exploit the lattice symmetry so that the sums 
need only be evaluated in an irreducible part of the Brillouin zone. Winter et a1 [l] 
used a scheme in which quantities are evaluated in an array of directions for k and 
an interpolation scheme is used for quantities dependent on k + g. 

For p in a general direction group theory is not applicable and one has to consider 
other methods of dealing with the Brillouin zone sums. Most modern methods for 
dealing with such sums involve the division of the Brillouin zone into microcells 
and approximating the integrand within the cell usually via a linear scheme. For 
instance Lipton and Jacobs [2] used microcubes and linearized the energies within 
the cubes. A major advance in these linear methods was made by Jepson and 
Andenen [3] and Lehman and ?aut [4] with the development of the tetrahedron 
method. From geometric considerations the latter authos obtained analytic formulae 
for the density of states (DOS) for each tetrahedron. Subsequently Rath and Freeman 
[SJ and Per-Anker Lindgard [GI have adapted this method to calculate the unenhanced 
susceptibility x. However none of the above methods can deal with rapidly varying 
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matrix elements since they use either constant matrix elements or average values for 
them. For quantities which have the form of a simple spectral function Gilat and 
Bharatiya [7] have given an explicit formula which includes the matrix elements. In 
this letter we develop a method of calculating the unenhanced susceptibility which 
treat the matrix elements on a level with the band energies. Indeed our method is 
simpler with variable matrix elements. 

Because the above methods integrate directly the Lindhard function special 
precautions need to be taken when the band energies are near the Fermi surface. The 
procedures adopted use extra k points or directions which involve either extrapolation 
for the extra k points or extra band calculations. In our method we first calculate the 
joint density of states (JDOS) recently introduced by us [8] for a l ied mesh of k point?. 
and then obtain the unenhanced susccptibility by multiplying the JDos by a weighting 
function and integrating Over energies. This disentangles the problems relating to (i) 
using a sufficient number of k points for the linear tetrahedron method to be valid 
and (U) dealing with the principal part character of the integral entering through the 
weighting function. Since in a complex solid band structure calculations are computer 
intensive our method allows the use of a reasonable coarse mesh of k points while 
using a fine energy integration mesh around the Fermi surface. As a bonus our JDOS 
may also be used to calculate other quantities like the propagator for the t-matrix. 

In this article we derive two alternative intcgral formulae for the JDOS. Within 
a tetrahedron where the various quantities may be linearized we derive analytic 
formulae for the mos. Our formulae show explicitly why problems arise when the 
gradients of the energies are parallel. In the final section we discuss our method, teSt 
it with a model FCC tight-binding band and outline how these may be implemented 
within a first-principles band structure program. 

Below we develop our algorithm to calculate the unenhanced susceptibility, x. In 
general this may be written as 

dc'deJqtG,q(c', E)U'(E', €,U). (1) ./ X ( q  f G, q, W )  = 

In (I), the Lindhard function 1Y is defined by 

W(E,E',W) = ( f ( 6 )  - f(e')/(c - E' - -w - iq) (2) 

where q is a positive infinitesimal and f(z) is a Fermi function. The computational 
problem is now relegated to (Dos, J ,  defined by 

J9tO,.Jf', E) = J%;+,(k,;q, G)6(E' - Cn;k,tq)6(C - %k,) (3) 

where G is a reciprocal lattice vector, n, n' are band indices and we have used a 
convention in which numerically subscripted variables are summed or integrated over 
their respective domains. The so-called matrix elements M are given by 

A f n J , n ( k  q >  G )  = F"'ktq,nk(Q + G ) F L t q , d q ) .  (4) 

In a tight-binding LMTO [9] formalism with basis states p,,L E (lm) and two 
centre integrals [lo] F,,, defined by 
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where b,, relate the band states %be to the LMTO orbitals qL. The composite index 
R denotes the band n and the wave vector k. 

In the usual DOS method we may write 

where the integral is over the surface e , ( k )  = E. 

for the joint density of states: 
Exploiting the second delta function we obtain the following general expression 

For each pair of bands n‘, n the integral is over the cume, C, where the surfaces 
enk = E and = e‘ intersect. 

Since we have a third function M ( k ; . .  .) with surfaces defined by M = 
M(B;.  . .) we can transform the integral over dc into an integral over d M .  Indeed 

It will be seen that this last expression is easier to evaluate than the right hand side 

The above expressions for the JDOS are valid in general. For simple bands one can 
obtain explicit formula for the JDOS. Let us consider the simple case of free electrons 
where ck = hzkz/2m. In this case the band indices n, n‘ and the reciprocal lattice 
vector G are unnecessary and the matrix element is unity. The expression (8) reduces 
to 

of (8). 

The contour, C, of integration is a circle, the intersection of two spheres centred at 
the origin and at -q with radii proportional to fi and fl, respectively. Integrating 
we obtain 

where eq = hzqz/2m. We have the remarkably simple result that for a parabolic band 
the JDOS is constant with respect to e and e’. In fact it is non zero within a parabola 
defined by ( E  - e’)z - 2 e , ( ~  + e’) + e: = 0. This parabola is symmetrical about the 
line ‘e = e‘. If we substitute the expression (11) into the expression for x and perform 
the double integral we obtain for free electrons the unenhanced susceptibility: 
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which is the standard result Ill]  with the van Hove singularity at Q = 2kF. 
In the more general case we would expect the JDOS to have more structure. 

In particular we would expect the quantity M , , , ( k ; p  + G) to modify the results 
considerably. Indeed recently we have shown [12] that for a simple tight-binding 
band we can obtain almost analytic results for the JDOS and x and that the variation 
of the matrix elements with k profoundly modify the behaviour of x. With actual 
bands the symmetry of the lattice must be reflected in the JDOS and x. 

In general the integration in either (8)  or (9) cannot be done analytically and one 
has to find efficient algorithms to do  them numerically. In this section we shall now 
extend the tetrahedron method [3] normally used for calculating the JDOS 

where the integral is over the surface c n ( k )  = E. I n  this method the whole of k 
space is divided into tetrahedra and the integral is then a sum over the integrals for 
the tetrahedra. Within each tetrahedron a function f(k) may be linearizcd, i.e. 

f(k) E f j  + (k - k1) ' V f  (14) 

where f, = f(k,) ,and kl ,  k,, k3, and k4 are the vertices of the tetrahedron. If we 
define the matrix K; = (he - kj)'  for 01 = 2, 3, 4 or 

a=2 

In the normal tetrahedron method the algorithm is considerably simplified by the 
simple analytic expressions, dependent only on the values, ear of the energies at the 
vertices, obtained [3] the ratio of the surface dS and VE, ,~ .  Closer scrutiny shows 
that the simplification is due to the fact that the volume of the tetrahedron can  be 
factored out of the cross-sectional area. Since one can choose tetrahedra with the 
same volume considerable computing is saved. We shall show that we can also factor 
out the tetrahedron volume in our expressions for the JDOS. 

Each of the gradients, V M , V c n k  and 
V E , , , ~ + ~  may be written in the form (16) and thc triple scalar product may be 
written as 

Let us consider the exprcssion (9). 

V M  Vr,k x VE,,~, ,  = det(tc-'. z M )  

where 

M2 - MI r2 - c1 E; - c; 
M ,  - M I  E 3  - c, E ; -  €; 

M ,  - MI c4 - € 1  E &  - E ;  
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and the subscripted quantities denote the values of the functions evaluated at the 
tetrahedron vertices. From the properties of determinants we have 

det(K-' . z I w )  = det(6-I) det z,,, = det z,,,,' detn. (17) 
From the definition (15) of the matrix E we obselve that 

det(n) = (k2 - h, )  . (k3 - kl) x (k, - kl) = 6Q2, 

which is six times Q,, the volume of the tetrahedron. We thus obtain for the DOS an 
expression which is analogous to the simple analytic one for the DOS. Apart from the 
volume the value of the JDOS for each tetrahedron is dependent only on the values 
of the matrix element and the energies C , , ~ , Z ; , ~ + ~  at the vertices. This result was 
first derived by Long [13]. 

The above results are very useful when the band structure program producing the 
energies E,& and E ' , , ~ + ~ ,  also produce the matrix elements. However the calculation 
of the matrix elements IS a time consuming process and sometimes one would like 
to ignore the k variation. If the matrix elements are constant then the expression 
(9) becomes singular since V M  vanishes. We must revert to the expression (8). The 
denominator of (8) can also be written as a determinant but in order to have the 
desirable property of factorizing the tetrahedron volume we must find an appropriate 
expression for the unit vectors e; spanning k space. Since k, - k, = (k, - k,) je i  
we may invert this equation to write 

(18) 

The vector product in (8)  may now be written 

Vcnk x Ve,,,+, = det(K-'. Z) 

where 

h, - k, e, - E, c; - c; . 
h 2 -  k, c2 - €; - c; 

k 4 - k 1  c 4 - c ,  €;-E; ) z =  ( 
The determinant may now be expanded to give 

det(K-'. Z) = det(K-')det(r) = det(z)/detK 

and we again have the tetrahedron volume factored out. 
We must now do the line integral specified by (8) or (9). In the spirit of the 

tetrahedron approximation the line integral in (8) is simply the distance between the 
two points at which the line of intersection of the surfaces c = cnk and c' = 
hit the appropriate faces of the tetrahedron. For the integral (9) we require only the 
values of M,, , (k ,q ,G)  at these points. To determine these end points we follow 
Long 1131 by defining an alternate set of coordinates A,, a = 1,2,3,4:  

4 4 

k = k* + X,(k, - k,) = A,k,. (19) 
a=2 ,=I 
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In the last sum we have the condition E, A, = 1. We observe that h on a face 
opposite to vertex a have A, = 0. Substituting for k into the linearized expression 
(14) for a general function f(k) we have 

4 

f(k) = Lf,. 
ol=l 

Thus in terms of the As the energy surfaces arc given by 

Therefore the end point on face f is given by the solutions to the equations (20) and 
XI = 0. If we define 

1 €4 

then the triplet of X values defining h for the end point at the face f is given by 

Assuming that the line of intersection C hits surfaces f and f' the JDOS is given 
(1 e €1 )my'. 

bY 

For the case where we have a constant matrix M we have the more complicated 
expression 

In the above the: subscript t under the summation sign refer to the tetrahedra. 
We have implemented the above method for calculating the JDoS and the 

unenhanced susceptibility using first-principles LMTO band structure program. 
Although our implementation uses parallel algorithms for both the tetrahedron sums 
and the band structure [14] the calculation of x ( q )  is still a formidable undertaking 
requiring substantial computing resources. We shall report on the results obtained 
with this implementation using actual band structures in a future paper [15]. 

To calculate the unenhanced susceptibility x we must calculate the DOS for a 
sufficient number of values of and E' so that we can integrate its product with the 
Lindhard function W(e', f ) .  The calculation of x depends on two meshes (i) the 
mesh of h points used in evaluating the band structures and matrix elements and (ii) 
the integration mesh used for evaluating the double integral over the energies E and 
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d. Since the Lindhard function possesses a singularity when E and c' approach each 
other from opposite sides of the Fermi energy, E, one has to ensure a sufficiently 
fine mesh of energies near EF. However this variation of energy may be done 
independently of the k mesh used in calculating the band structures. Our method 
allows the choice of a relatively coarse k mesh which is fixed throughout thereby 
offering savings of processing time. 

In the standard discussion [16] of the instability of the normal phase with respect 
to superconductivity one looks for divergence of the l-matrix. The propagator for 
this quantity is given by 

This may be calculated by integrating the product of JDOS and an appropriate 
weighting function of c' and E .  Indeed once the band energies are produced one 
can calculate criteria for instability with respect to both diagonal and off diagonal 
long-range order at the same time by evaluating respectively x and the t-matrix, 
respectively. 

We can test part of our algorithm by calculating the unenhanced susceptibility 
using a model band structure and comparing our results with those obtained previously 
by others. With a model band structure we are not restricted by the number of points 
we can afford to use in our k mesh. The results of such a calculation using a model 
FCC tight-Mnding band with nearest and next nearest neighbour overlap is shown 
in figure 1. Using the same band parameters as Lipton and Jacobs [2] we have 
reproduced the plots of x ( q )  given in their paper. 

In summary we have extended the tetrahedron method to compute the (DOS). 
Employing this JDOS we present a new algorithm for calculating the unenhanced 
susceptibility and the propagator for the f-matrix. The matrix elements present no 
problems, in fact they make the calculation somewhat more straightfonvard. We have 
checked the method by computing x(g) for a model FCC tight-binding band and 
produced results in agreement with previous calculations. 
I wish to thank Martin Long for his comments and discussions and for the use of a 
subroutine and some of the results in his unpublished notes. Thanks are also due to 
Derek Crockford for help and discussions. This research is supported by SERC grant 
GR/F 50299 and 52897. 

02 0 1  0.6 0.8 10 

Figure 1. Unenhanced susceptibilities for a model FCC lighl-binding band as a function 
of q for a series of Fermi energies. 
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